塑料的熱物性質可區分為:
1.容積性質(Volumetric properties):比容(Specific volume)、密度(Density)及PVT關係
2.熱卡性質(Calorimetric properties):比熱(Specific heat)、熱傳導係數(Thermal conductivity)、熔化熱 (Heat offusion)、結晶熱(Heat of crystallization)
3.轉移溫度(Transition temperature):玻璃轉移溫度(Glass transition temperature)、熔點(melting point)
當聚合物在玻璃轉移溫度(Tg)時,會由較高溫時所呈現的橡膠態,轉至低溫呈現出似玻璃既硬又易脆的性質。結晶性(Crystalline)聚合物,由於具備晶格結構,即其高分子鏈排列有固定樣式(結晶過程中高分子鏈排入結晶格子中),在發生相變化時,必須突破結構的能量障壁,才能使晶格結構崩潰,因此結晶性塑料具有明顯的相轉移溫度及潛熱值。一般來說,官能基小、結構簡單的分子,較易形成結晶性聚合物。而實際上沒有完全結晶的聚合物存在,微觀上必有分子排列不均的非結晶區域,所以玻璃轉移點是聚合物在使用上相當重要的一個指標,事實上聚合物會呈現塑膠態或橡膠態全視Tg與當時使用時的溫度而定。
Tuse > Tg →橡膠態 如:室溫(25℃) > 橡膠(Tg=-67℃)∴輪胎在常溫下呈現彈性。
Tuse < Tg →玻璃態 如:室溫(25℃) < 聚笨乙烯(Tg=105℃)∴原子筆外殼呈現剛性。
可使用熱差掃描熱卡計(Differential Scanning Calorimeter,DSC)來測試聚合物的熱性質。其基本原理為樣品與參考物維持相同的溫度及升溫速率,由於樣本和參考物所吸收的能量會有差異,所以當感熱器感應到有溫度差時,加熱器會對較冷者加熱到二者溫度相等,此時儀器會記錄補償樣品吸熱或放熱反應所損失或增加之熱量(即樣品產生吸熱反應時,加熱器提供熱量於樣品;樣品產生放熱反應時,加熱器提供熱量於參考物,使二者的溫度差為零),並於DSC的圖形上表達出來,再藉由熱力學的推導應用來分析聚合物的Tg、Tm、Cp(Heat Capacity,熱容量,將單位塑料溫度提高一度所須的熱量)、熔化熱(Heat of Fusion,單位塑料由固態熔化至液態所需的熱量)、結晶熱(Heat of Crystallization,結晶性塑料在結晶過程中所釋放的熱量)等相關的熱物性質。
|